The Problem:

IED Threats
- Pressure Plate IEDs
- Remote Controlled (RC IEDs)
- Battery – Wire (on command) IEDs
- IR Triggered IEDs

Mines
- Pressure Land Mines
- Switch Triggered (booby trap) Mines
- Anti-Personnel Mines
- Anti-Vehicle mines
- Blast Mines
- Anti-Helicopter Mines
Detection:
Costly for Armed Forces -
- Cost in Lives
- Cost in Equipment
- Cost to Detect & Defeat
Detection by Helicopter

Barrier: Cost

Helicopters cost over a $1.7 Million to deploy & maintain
The Solution: Airborne Bomb Detection ABD325 Series

The Airborne Bomb Detector is used to search for:
- IEDs
- Land Mines
- Remote Controlled Radio Triggered Explosives
- Unexploded Ordnance
- Ammunition & Weapons Caches

ABD200 + ABD325

Operating Parameters

- Magnetic field data is transmitted wirelessly or stored on the drone
- Data is processed upon mission completion or in real-time
- Analyzing magnetic field variations allows detection of landmines
Airborne Bomb Detection

The Airborne Bomb Detector consists of a light weight custom-designed UAV, with a frame and mount built to house proprietary communication and logging platforms, power supply, and sensor telemetry.
The ABD325 Series during Multiple Altitude Survey Tests
The ABD325 Series with Mortar Samples: DETECTED
During testing, the ABD325 series set out to accomplish the following:

- Determine whether or not metallic targets could be detected with a magnetometer mounted on a sUAS (Unmanned Aircraft System).

- Gain knowledge specific to the ability to detect varied sizes and types of targets and how the flight parameters (specifically, flight speed and elevation) affect detection capabilities.

- Increase our understanding of the UAS-Sensor performance specifications required to develop an enhanced magnetic survey platform, including but not limited to motor size, thrust propeller size, frame geometry and materials, navigation and orientation electronics.

- Assess the magnetic noise level of a multi-rotor UAV and determine what steps should be taken to remove craft noise from the final product.
ABD200 + ABD325 Navigation & Software

Similar to an aircraft, the ABD200 + ABD325 are able to employ a Graphic Interface that shows navigational controls for the operator in order to conduct search and detection missions for hidden threats on and under the surface.

Ground Station Software

The ABD Series configures Ground Station applications with a full-featured software suite + intuitive graphical interface, including tools for:

- Mission planning
- Automatic sensor control and cueing
- Situational awareness
- Image viewing on a moving map display
- Target detection tools and report generation
ABD200 + ABD325 Acquisition Elements

- Linux or Win 7 Embedded based
- Uses Single Board Computing (SBC) technologies such as: PC 104, Arduino, etc.
- Multiple frequency counters, I/O ports and Analog/Digital (ADC/DAC) converters.
- Field Programmable Gate Array (FPGA) for high-speed throughput
- Time stamp accuracy for Multiple sample rates
The layout of the targets for this survey is presented here.

The ABD325 Series used a single magnetometer mounted rigidly below the craft.
ABD200 +
ABD325
Detection
Test Objects as data output by the sensor telemetry